Properties of Whole Numbers for Class 1

Table of Content

  • Whole Numbers
  • Properties of Whole Numbers
  • The reading material provided on this page for Properties of Whole Numbers is specifically designed for students in grades 5 and 6. So, let's begin!

    Whole Numbers

    Whole numbers are the set of numbers that includes all positive integers (1, 2, 3, ...) as well as 0. Whole numbers do not include negative numbers or fractions.

    Properties of Whole Numbers

    Closure Property

    Whole numbers are closed under addition and multiplication. This means that if you add or multiply two whole numbers, the result will always be another whole number.
    If a and b are two whole numbers, then,

    • a + b = c
    • a x b = c
    • c is a whole number

    Example: 7 + 2 = 9 is a whole number
    7 x 2 = 14 is a whole number

    The resulting values in the above examples are whole numbers.

    Commutative Property

    Whole numbers have the commutative property of addition and multiplication. This means that the order of the numbers does not matter when adding or multiplying them.
    If a and b are two whole numbers, then.

    • a + b = b + a
    • a x b = b x a

    Example: 3 + 7 = 7 + 3 = 10
    2 x 5 = 5 x 2 = 10

    From the above examples we can observe that the result is not affected by the change in the order of numbers.

    Associative Property

    Whole numbers have the associative property of addition and multiplication. This means that changing the grouping of the numbers when adding or multiplying them will not affect the result.
    Let a, b, and c are three whole numbers, then.

    • a + (b + c) = (a + b) + c
    • a x (b x c) = (a x b) x c

    Example: 3 + (4 + 5) = (3 + 4) + 5
    3 + 9 = 7 + 5
    12 = 12

    L.H.S = R.H.S
    5 x (3 x 4) = (5 x 3) x 4
    5 x 12 = 15 x 4
    60 = 60
    L.H.S = R.H.S

    From the above examples, we can observe that the result is not affected by the change in the order of numbers.

    Distributive Property

    Multiplication is distributive over addition and subtraction. It means that if a, b and c are whole numbers then.

    • a x (b + c) = (a x b) + (a x c)
    • a × (b - c) = (a × b) - (a × c )

    Example: 2 x (3 + 4) = (2 x 3) + (2 x 4)
    2 x 7 = 6 + 8
    14 = 14
    L.H.S. = R.H.S.

    Identity Property

    Whole numbers have an identity element. The identity element for addition is 0 and the identity element for multiplication is 1.

    Example: 29 + 0 = 29
    29 x 1 = 29
    By the above examples, we can say that if zero is added to any whole number, then the value of the original number does not change.

    Similarly, when we multiply any whole number by 1, then the value of the actual number remains unchanged.

    NOTE:

    1. Whole numbers are not closed under division: When you divide a whole number by another whole number, the result may not always be a whole number.

    For example, 7 ÷ 2 is not a whole number, but 8 ÷ 4 is a whole number.

    2. Whole numbers are non-negative: Whole numbers are always positive or zero. They do not include negative numbers, such as -1, -2, -3, etc.

    Operation Closure Property Associative Property Commutative Property
    Addition yes yes yes
    Subtraction no no no
    Multiplication yes yes yes
    Division no no no

    Quick Video Recap

    In this section, you will find interesting and well-explained topic-wise video summary of the topic, perfect for quick revision before your Olympiad exams.

    ***COMING SOON***

    ×

    Share Your Feedback

    CREST Olympiads has launched this initiative to provide free reading and practice material. In order to make this content more useful, we solicit your feedback.

    Do share improvements at info@crestolympiads.com. Please mention the URL of the page and topic name with improvements needed. You may include screenshots, URLs of other sites, etc. which can help our Subject Experts to understand your suggestions easily.

    Mental Maths Related Topics

    Other Subjects for Class 1

    70%