Worksheet on Triangles and its Properties for Class 9

Solved Questions on Triangle and its Properties

1. What is the sum of exterior angles of the triangle ABC?

cmo-triangles-c9-20

a) 180°
b) 270°
c) 300°
d) 360°

Answer: d) 360°

Explanation: Let interior angles be x°, y° and z°, respectively.

Then, exterior angles are (180 − x)°, (180 − y)° and (180 − z)° respectively.

The labelled diagram is shown as

cmo-triangles-c9-21

Sum of interior angles of △ABC = x° + y° + z° = 180° 

Sum of exterior angles of △ABC = (180 − x)° + (180 − y)° + (180 − z)°
                                               = 180° − x° + 180° − y° + 180° − z°
                                               = 180° + 180° + 180° − x° − y° − z°
                                               = 180° + 180° + 180° − (x° + y° + z°)
                                               = 180° + 180° + 180° − 180°
                                               = 360°

2. Which of the following conditions holds true for △BAT if line segment AQ is the bisector of ∠A and line segment AP is perpendicular to line segment BT?

cmo-triangles-c9-22

a) ∠PAQ = ∠ABT − ∠ATB
b) ∠PAQ = 12 (∠ABT − ∠ATB)
c) ∠PAQ = 13 (∠ABT − ∠ATB)
d) ∠PAQ = 14 (∠ABT − ∠ATB)

Answer: b) ∠PAQ = 12 (∠ABT − ∠ATB)

Explanation: In △BAT,
∠TAQ = ∠BAQ [Line segment AQ is the bisector of ∠A.]
∠APB = ∠APQ = 90° [Line segment AP is perpendicular to line segment BT.]

In △BAQ,
∠AQT = ∠BAQ + ∠ABQ [Exterior angle is the sum of two opposite interior angle.]

In △ATQ,
∠TAQ + ∠ATQ + ∠AQT = 180° [Sum of interior angle of a triangle is 180°.]
⇒ ∠TAQ + ∠ATQ + (∠BAQ + ∠ABQ)  = 180° [Put ∠AQT = ∠BAQ + ∠B]
⇒ ∠TAQ + ∠ATQ + (∠TAQ + ∠ABQ) = 180° [Put ∠TAQ = ∠BAQ]
⇒ 2∠TAQ + ∠ATQ + ∠ABQ = 180°                        
⇒ 2∠TAQ = 180° − ∠ATQ − ∠ABQ
⇒ ∠TAQ = 12 (180° − ∠ATQ − ∠ABQ)

∴ ∠TAQ = 90° − 12 ∠ATQ − ½ ∠ABQ …………………(i)

∠AQP = ∠TAQ + ∠ATQ [Exterior angle is the sum of two opposite interior angle.]

In △APQ,
∠PAQ + ∠AQP + ∠APQ = 180° [Sum of interior angle of a triangle is 180°.]
⇒ ∠PAQ + ∠AQP + 90° = 180° [Put ∠APQ = 90°]
⇒ ∠PAQ + ∠AQP = 90°
⇒ ∠PAQ + (∠TAQ + ∠ATQ) = 90°     [Put ∠AQP = ∠TAQ + ∠ATQ]
⇒ ∠PAQ + 90° − 12 ∠ATQ − 12 ∠ABQ + ∠ATQ = 90° [From (i)]
⇒ ∠PAQ = 90° − 90° + 12 ∠ATQ + 12 ∠ABQ − ∠ATQ
⇒ ∠PAQ = 12 ∠ABQ + 12 ∠ATQ − ∠ATQ
⇒ ∠PAQ = 12 ∠ABQ − 12 ∠ATQ
∠ABQ and ∠ABT is the same angle.
∠ATQ and ∠ATB is the same angle.

∴ Hence, ∠PAQ = 12 (∠ABT − ∠ATB)

3. Which of the following conditions is true for the quadrilateral ABCD?

cmo-triangles-c9-23

a) DC + DA+ BA + BC > 2(CA + BD)
b) DC + DA + BA + BC < 2(CA + BD) 
c) DC + DA + BA + BC > 3(CA + BD)
d) DC + DA + BA + BC < CA − BD

Answer: b) DC + DA+ BA + BC < 2(CA + BD)

Explanation: The sum of any two sides of a triangle is always greater than the third side. Therefore, the third side of a triangle is less than the sum of the other two sides.  

In △AOB, BA < OA + OB       ……………(I)
In △BOC, BC < OB + OC      ……………(II)
In △COD, DC < OC + OD       ……………(III)
In △DOA, DA < OD + OA       ……………(IV)

Adding (I), (II), (III) and (IV).
BA + BC + DC + DA < OA + OB + OB + OC + OC + OD + OD + OA
⇒ DC + DA + BA + BC < 2OA + 2OB + 2OC + 2OD
⇒ DC + DA + BA + BC < 2(OA + OC + OB + OD)
∴ DC + DA + BA + BC < 2(CA + BD) [CA = OA + OC and BD = OB + OD]

4. In the right-angled triangle PQR where ∠P is the right angle. The midpoint of the hypotenuse QR is denoted as T. A line segment is drawn from point P to the midpoint T and extended to points S such that PT is equal to TS. Point S is then connected to point R as shown in the figure. The following statements are demonstrated:

(i) Triangles PTQ and RTS are congruent.
(ii) Triangles QPR and SRP are congruent.
(iii) PTR is equal to 104° if TRP is 33°.
(iv) The length of PT is greater than half of the length of SP.
(v) The length of PT is equal to half of the length of QR.

cmo-triangles-c9-24

Which of the following statements is NOT correct?

a) Only (ii) and (iii).
b) Only (ii), (iii) and (iv).
c) Only (iii) and (iv).
d) Only (iii), (iv)and (v).

Answer: c) Only (iii) and (iv).

Explanation: T is the midpoint of QR and PT = TS.

The statements are as follows: 

(i) In △PTQ and △RTS,
QT = RT                  [T is the midpoint of QR]
∠PTQ = ∠PTQ        [Vertically Opposite Angle]
PT = TS                   [Given]
△PTQ ≅ △RTS       [By SAS Criterion]
Hence, statement (i) is correct.

(ii) In △QPR and △SRP,
△PTQ ≅ △RTS        [By SAS Criterion]
△PTQ + △PTR ≅ △RTS + △PTR      [Adding △PTR both side]
△QPR ≅ △SRP        [△PTR is common to both △QPR and △SRP]
Hence, statement (ii) is correct.

(iii) In △PTR,    
QR = SP [By CPCT, △QPR ≅ △SRP]
⇒ QT + RT = PT + TS [QR = QT + TR and SP = PT + TS]
⇒ RT + RT = PT + PT [Put QT = RT and PT = TS]
⇒ 2RT = 2PT
⇒ RT = PT

Angles opposite sides of equal length in a triangle are equal.

∴ ∠TPR = ∠TRP

⇒ ∠PTR + ∠TPR + ∠TRP = 180°       [Sum of interior angle of a triangle is 180°.]
⇒ ∠PTR + 33° + 33° = 180°  [From statement, ∠TRP = 33° and ∠TPR = ∠TRP]
⇒ ∠PTR = 114°

Hence, statement (iii) is not correct.

(iv) In △PSR,
SP = PT + TS
⇒ SP = PT + PT  [Given: PT = TS]
⇒ SP = 2PT
⇒ PT = ½ SP

∴ The length of PT is equal to half of the length of SP.

Hence, statement (iv) is not correct.

(v) In △PQR and △PSR,
⇒ PT = ½ PS        [As proved above in statement (iv).]
⇒ PT = ½ QR       [QR = SP, By CPCT, △QPR ≅ △SRP]

∴ The length of PT is equal to half of the length of QR.

Hence, statement (v) is correct.

∴ Only statements (i), (ii) and (v) are correct. Only statements (iii) and (iv) are incorrect.

5. In △XYZ, the length of XY is (p − q), the length of ZY is √2pq and the length of ZX is √(p2 + q2). What is the value of the angle ∠ZYX?

a) 60°
b) 75°
c) 90°
d) 105°

Answer: c) 90°

Explanation: In △XYZ,

cmo-triangles-c9-25

XY2 + ZY2 = (p − q)2 + (√2pq)2
⇒ XY2 + ZY2 = p2 + q2 − 2pq + 2pq
⇒ XY2 + ZY2 = p2 + q2   …………(i)

ZX2 = [√(p2 + q2)]2
⇒ ZX2= p2 + q2  …………(ii)

From (i) and (ii),
ZX2 = XY2 + ZY2

Which satisfy the Pythagoras' Theorem.

∴ Hence, ∠ZYX = 90°.

>> Join CREST Olympiads WhatsApp Channel for latest updates.

Downloadable Worksheet

If your web browser doesn't have a PDF Plugin. Instead you can Click here to download the PDF

>> Join CREST Olympiads WhatsApp Channel for latest updates.

Maths Related Topics for Class 9

Quick Video Recap

In this section, you will find interesting and well-explained topic-wise video summary of the topic, perfect for quick revision before your Olympiad exams.

***COMING SOON***

×

>> Join CREST Olympiads WhatsApp Channel for latest updates.

Other Subjects for Class 9

70%